skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Madden, Jessica_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cross-ecosystem subsidies influence the structure and dynamics of recipient ecosystems and can be sensitive to disturbance. Primary production exported from marine to shoreline ecosystems is among the largest known cross-ecosystem subsidies. However, the spatial scales at which this important connection is manifested are largely unquantified. We used local and regional observations of nearshore kelp canopy biomass and beach kelp wrack inputs to evaluate the scales at which connectivity between kelp forests and beaches is maximized. Regardless of the spatial and temporal scales considered, connectivity was highly local (<10 km) and strongest in winter. Kelp canopy biomass was the primary driver of wrack subsidies, but recipient ecosystem attributes, particularly beach width and orientation, were also important. These drivers of connectivity highlight that disturbance to either ecosystem will have large implications for beach ecosystem productivity. Spatial connectivity can regulate recovery from disturbances such that ecosystem connections must be considered in conservation efforts. 
    more » « less